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Abstract:

Open Command and Control (OpenC2) is a concise and extensible language to enable the command and control of
cyber defense components, subsystems and/or systems in a manner that is agnostic of the underlying products,
technologies, transport mechanisms or other aspects of the implementation. Message Queuing Telemetry Transport
(MQTT) is a widely-used publish / subscribe (pub/sub) transfer protocol. This specification describes the use of MQTT
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1 Introduction
This section is non-normative.

OpenC2 is a suite of specifications that enables command and control of cyber defense systems and components.
OpenC2 typically uses a request-response paradigm where a request (i.e., command) is encoded by an OpenC2
Producer (managing application) and transferred to one or more OpenC2 Consumers (managed devices or virtualized
functions) using a secure transfer protocol. The Consumers act on the request and respond with status and any other
requested information.

This specification describes OpenC2's use of the MQTT publish / subscribe messaging protocol to exchange OpenC2
messages between Producers and Consumers. Version 5 of the MQTT Specification [MQTT-v5.0] is used as it includes
features useful for OpenC2 that are not available in the previous version [MQTT v3.1.1].

1.1 Changes from Earlier Versions
The following changes have been implemented since WD08:

Simplified presentation of protocol requirements in Section 3
Added example illustrating use of paho python MQTT client
Enhanced example graphics to highlight requirements from this specification
Added conformance section
Added prohibition against use of MQTT Response Topic feature
Updated message format to align with current OpenC2 Language Specification

1.2 Glossary
1.2.1 Definitions of terms

The terms defined in Section 1.2, Terminology, of the MQTT v5.0 specification [MQTT-v5.0] are applicable to this
specification.

The following terms defined in Section 1.2, Terminology, of the OpenC2 Language Specification [OpenC2-Lang-v1.0]
are applicable to this specification:

Command: A message defined by an action-target pair that is sent from a Producer and received by a Consumer.
Consumer: A managed device / application that receives Commands. Note that a single device / application can
have both Consumer and Producer capabilities.
Message: A content- and transport-independent set of elements conveyed between Consumers and Producers.
Producer: A manager application that sends Commands.
Response: A message from a Consumer to a Producer acknowledging a command or returning the requested
resources or status to a previously received request.

1.2.2 Acronyms and abbreviations

Acronym Meaning

AKA Also Known As

AP Actuator Profile

JSON JavaScript Object Notation

MQTT Message Queuing Telemetry Transport

RFC Request For Comment

1.2.3 Document conventions
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1.2.3.1 Naming Conventions

All MQTT control packet names are in ALL CAPS (e.g., CONNECT, PINGREQ)
All MQTT property names are in Initial Cap and use a fixed-width font (e.g., User Property).

1.2.3.2 Font Colors and Style

The following color, font and font style conventions are used in this document:

A fixed-width font is used for all type names, property names, and literals.

1.2.3.3 MQTT Data Representation

Section 1.5 of the MQTT v5.0 specification [MQTT-v5.0] defines data types relevant to the protocol. Implementations of
this specification are assumed to encode and decode those data types as defined in the MQTT specification.

In this specification, the UTF-8 String Pair data type ([MQTT-v5.0], section 1.5.7) is of particular interest, as MQTT v5.0
User Properties are utilized. Within this document, the representation for a UTF-8 String Pair User Property is 
"key":"value".

Per the MQTT specification sections 1.5.4 and 1.5.7 each string is encoded with a 2-byte length followed by the UTF-8
encoding of the string, so the general form of a User Property as a UTF-8 String Pair is:

1-byte identifier for User Property [0x26]
2-byte length of first string
UTF-8 encoding of first string
2-byte length of second string
UTF-8 encoding of second string

For the "key:value" example above, the encoding would be:

[0x26][0x00][0x03]key[0x00][0x05]value
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2 Operating Model
This section is non-normative in its entirety.

This section provides an overview of the approach to employing MQTT as a message transfer protocol for OpenC2
messages.

2.1 Publishers, Subscribers, and Brokers
When transferring OpenC2 Request (AKA command) and Response messages via MQTT, both Producers and
Consumers act as both publishers and subscribers:

Producers publish Requests and subscribe to receive Responses
Consumers subscribe to receive Requests and publish Responses

The MQTT client software used by Producers and Consumers and all MQTT brokers used for OpenC2 message transfer
are beyond the scope of this specification, but are assumed to be conformant with the MQTT v5.0 specification [MQTT-
v5.0]. In the context of OpenC2, and in accordance with the Terminology section (1.2) of [MQTT-V5.0]:

MQTT Brokers are Servers
OpenC2 Producers and Consumer are Clients

Brokers facilitate the transfer of OpenC2 messages but in their role as Brokers do not act in any OpenC2 role.

2.2 Default Topic Structure
The MQTT topic structure described in Table 2-1 is used to exchange OpenC2 messages. The "oc2" prefix on the topic
names segregates OpenC2-related topics from other topics that might exist on the same broker. Topic name
components in brackets (e.g., [actuator_profile]) are placeholders for specific values that would be used in
implementation. For example, a device that implements the Stateless Packeting Filter AP would subscribe to 
oc2/cmd/ap/slpf. In addition, each Consumer subscribes to its own device-specific topic using a device identifier
(annotated as [device_id]) that is assumed to be known to the OpenC2 Producer(s) that can command that
Consumer. The determination of device identifiers is beyond the scope of this specification.

Table 2-1: Default Topic Structure

Topic Purpose Producer Consumer

oc2/cmd/all Used to send OpenC2 commands to all
devices connected to this MQTT fabric.

Pub Sub

oc2/cmd/ap/[actuator_profile] Used to send OpenC2 commands to all
instances of specified Actuator Profile.

Pub Sub

oc2/cmd/device/[device_id] Used to send OpenC2 commands to a
specific device. Routing to APs within the
device is a local matter.

Pub Sub

oc2/rsp Used to return OpenC2 response messages. Sub Pub

oc2/rsp/[producer_id] Used to return OpenC2 response messages
to a specific producer.

Sub Pub

In order to receive commands intended for its security functions, a Consumer device connected to the broker would
subscribe using the following topic filters:

oc2/cmd/all to receive commands intended for all devices
oc2/cmd/ap/[acutator_profile] for all actuator profiles the device implements
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oc2/cmd/device/[device_id] for that device's ID

In order to receive responses to the commands it sends, a Producer connected to the broker would subscribe using the
following topic filters:

oc2/rsp
oc2/rsp/[producer_id]

A Producer subscribing to oc2/rsp/# would receive all response messages published through the broker to any
specific [producer-id], regardless of whether the response was to a command originated by the subscribing
producer.

The inclusion of predefined response topics in the default topic scheme eliminates any need for an OpenC2 Producer to
use the PUBLISH control packet's Response Topic header (described in MQTTv5 sections 3.3.2.3.5 and 4.10) to
inform Consumers where to direct reply messages. The Response Topic field is not used for OpenC2 messaging
over MQTT.

Topic wildcards are not normally utilized for OpenC2 but their use is not precluded. For example, implementers of
OpenC2 Consumers might elect to use a wildcard to subscribe to the command topics for all actuator profiles
(oc2/cmd/ap/#) and filter received messages at the Consumer to identify relevant messages. An OpenC2 traffic
logger might subscribe to oc2/#.
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Non-normative Subscription Example

A notional OpenC2 Consumer that implements actuator profiles alpha and iota and has a device identifier of zulu
would subscribe using the following topic filters:

oc2/cmd/all
oc2/cmd/ap/alpha
oc2/cmd/ap/iota
oc2/cmd/device/zulu

A notional OpenC2 Producer with a device identifier of omega would subscribe using the following topic filters:

oc2/rsp
oc2/rsp/omega

Non-normative Publishing Examples

Under typical circumstances, the publishing of OpenC2 commands is either a 1:n situation (one Producer commanding
multiple Consumers) or a 1:1 situation (one Producer commands a specific Consumer). The publishing of responses
represents the reverse situation, where responses published by potentially numerous Consumers are all directed to a
single Producer.

A notional OpenC2 Producer wishing to command all Consumers that implement actuator profile iota would publish the
command to:

oc2/cmd/ap/iota

A notional OpenC2 Producer wishing to command the individual Consumer with identity zulu would publish the
command to:

oc2/cmd/device/zulu

Additional examples of publishing exchanges can be found in Appendix E.

2.3 Subscriptions Options
For each Topic Filter in the SUBSCRIBE control packet the Client specifies a set of Subscription Options
(MQTT-V5.0 specification section 3.8.3.1). The available options are:

Maximum QoS: the maximum QoS level at which the Server can send Application Messages to the Client
No Local: controls whether messages the Client publishes to this topic are published back to them
Retain as Published: Controls the setting of the retain flag in messages forwarded under this
subscription
Retain Handling: Specifies how retained messages present on the Broker when the subscription is
established are handled

The following values are recommended for Subscription Options for OpenC2 applications:

Maximum QoS: 2 -- allow the publisher to set the QoS level of the message
No Local: 1 -- do not receive back messages published by this Client on this topic
Retain as Published: 1 -- respect the publisher's retain setting value when forwarding messages
Retain Handling: 0 -- broker should send any retained messages when the subscription is established

2.4 OpenC2 Message Format
This section describes how OpenC2 messages are represented in MQTT PUBLISH control packets.

2.4.1 Content Type and Serialization
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OpenC2 messages are conveyed in the payload of MQTT PUBLISH control packets. As described in the MQTT-V5.0
specification section 3.3.3: "the content and format of the data is application specific" and therefore meaningless to the
Broker. OpenC2 uses the following MQTT PUBLISH control packet properties to convey essential information about the
message to the recipient:

Payload Format Indicator [Property 0x01]: This property is used to distinguish binary vs. UTF-8
encoded strings for the payload format, as specified in section 3.3.2.3.2 of the MQTT specification, and should be
set as appropriate for the message serialization used.

Content Type [Property 0x03]: a UTF-8 Encoded String describing the content of the Application
Message. For OpenC2 messages, the string "application/openc2" is used.

User Property [Property 0x26]: two User Properties (UTF-8 string pairs) are defined to further specify
the message format:

Key: "msgType": a UTF-8 string used to identify the type of OpenC2 message, as described in section 3.2
of the OpenC2 Language Specification. Legal values are:

"req" (request),
"rsp" (response), or
"ntf" (notification)

Key: "encoding": a UTF-8 string used to identify the specific text or binary encoding of the message.
Legal values are:

"json", and
"cbor"

The specifics of serializing OpenC2 messages are defined in other OpenC2 specifications.

2.4.2 OpenC2 Message Structure

OpenC2 messages transferred using MQTT utilize the OpcenC2-Message structure defined in Section 3.2 of OpenC2-
Lang-v1.0.

Message = Record
 1 headers       Headers optional
 2 body          Body
 3 signature     String optional

Headers = Map{1..*}
 1 request_id    String optional
 2 created       ls:Date-Time optional
 3 from          String optional
 4 to            String [0..*]

Body = Choice
 1 openc2        OpenC2-Content

OpenC2-Content = Choice
 1 request       OpenC2-Command
 2 response      OpenC2-Response
 3 notification  OpenC2-Event  

A Producer sending an OpenC2 request always includes its identifier in the message headers from field, allowing
receiving Consumers to know the origin of the request. A Consumer sending a response to an OpenC2 request always
includes its identifier in the message headers from field, allowing responses to the same request from different
Consumers to be identified by the Producer receiving the responses.

When publishing an OpenC2 request, the Producer can use the message headers to field as a filter to provide finer-
grained control over which Consumers should process any particular message than is provided by the MQTT Topic
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Structure and Client topic subscriptions. Consumers have no requirement to populate the message headers to field.

2.5 Quality of Service

MQTT-v5.0 Section 4.3, Quality of Service Levels and Protocol Flows, defines three quality of service (QoS) levels:

QoS 0: "At most once", where messages are delivered according to the best efforts of the operating
environment. Message loss can occur.
QoS 1: "At least once", where messages are assured to arrive but duplicates can occur.
QoS 2: "Exactly once", where message are assured to arrive exactly once.

QoS 1 is appropriate for most OpenC2 applications and should be specified as the default. Implementers have the
option of electing to use QoS 2 where the additional overhead is justified by application requirements. QoS 0 is not
recommended for use in OpenC2 messaging.

In accordance with the above, the requirements of MQTT-v5.0 Section 4.3.2, QoS 1: At least once delivery, apply to
OpenC2 Producers and Consumers when publishing messages to the MQTT broker.

As described in MQTT-v5.0 Section 4.6, Message Ordering, the use of QoS 1 assures that "the final copy of each
message received by the subscribers will be in the order that they were published" but does not preclude the possibility
of duplicate message delivery. OpenC2 Producers and Consumers implementations should be prepared to respond
sensibly if duplicate requests or responses are received.

2.6 MQTT Client Identifier

As described in MQTT-v5.0, Section 3.1, CONNECT – Connection Request, the Client Identifier (ClientID) is a
required field in the CONNECT control packet. Further requirements are contained in Section 3.1.3.1, Client Identifier
(ClientID), which defines the ClientID as a UTF-8 string between 1 and 23 bytes long containing only letters and
numbers (MQTT servers may accept longer ClientIDs). The MQTT specification also permits brokers to accept
CONNECT control packets without a ClientID, in which case the broker assigns its own ClientID to the
connection, which the client is obligated to use. MQTT-v5.0 provides no further definition regarding the format or
assignment of ClientIDs.

The ClientID serves to identify the client to the broker so that the broker can maintain state information about the
client. The ClientID has no meaning in the context of OpenC2, it is only meaningful to the MQTT client and broker
involved in the connection.

OpenC2 Producers and Consumers using MQTT for message transfer should generate and store a random ClientID
value that meets the constraints specified in MQTT-v5.0 Section 3.1.3.1, and retain that value for use when establishing
connections to a broker. This ClientID should be generated prior to any connection to an MQTT broker, potentially as
part of an initialization process. The ClientID for an OpenC2 Consumer is not required to have any meaningful
relationship to any identity by which a Producer identifies that Consumer in OpenC2 messages.

As described in MQTT-v5.0 Section 3.1.3.1, if a broker receives a CONNECT control packet with a zero-byte-length
ClientID, the broker must generate a ClientID and return it to the connecting client in the associated CONNACK packet
for the client's use. When using MQTT to transfer OpenC2 messages, the preferred behavior is for the client supporting
the OpenC2 Producer or Consumer to generate its own ClientID.

2.7 Keep-Alive Interval
The MQTT CONNECT control packet includes a Keep Alive property (MQTT-v5.0 section 3.1.2.10) that defines a
time interval within which a Client connected to a Broker is expected to send a control packet of any type to the Broker to
prevent the Broker from disconnecting from the Client. The PINGREQ control packet can be sent if the Client has no
other traffic to process. The MQTT specification notes that "The actual value of the Keep Alive is application specific;
typically this is a few minutes. The maximum value is 18 hours 12 minutes and 15 seconds." Per the MQTT specification
the Broker will close the network connection if 1.5 times the Keep Alive interval has passed without receiving a control
packet from the Client.
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This transfer specification leaves the selection of a Keep Alive interval to the implementer but defines a value of 5
minutes (300 seconds) as the maximum value for conformant implementations. For reliability, it is recommended that an
OpenC2 client send an MQTT PINGREQ when 95% of the Keep Alive interval has expired without any other control
packets being exchanged.

2.8 Will Message
The CONNECT control packet, described in MQTT-v5.0, Section 3.1, provides a Will Message feature that enables
connected clients to store a message on the broker to be published to a client-specified topic when the client's network
connection is closed. OpenC2 does not use the MQTT Will Message feature.

2.9 Clean Start Flag

As described in MQTT-v5.0, section 3.1.2.4, Clean Start, the MQTT CONNECT control packet includes a flag, Clean 
Start, that tells the broker whether the client, identified by its ClientID as described in Section 2.6, desires a new
session (Clean Start equals 1 [true]). In MQTT the setting of the Clean Start flag and the value of the Session 
Expiry Interval from the most recent CONNECT packet are relevant to how the broker handles client state. The
behavior is summarized in Table 2-2.

Table 2-2: Clean Start and Session Expiry

Session Expiry Interval Exceeded

Yes No

Clean
Start
Flag

True (1)
No prior state to discard
New subscriptions required

Prior state discarded
New subscriptions required

False (0)
No prior state to discard
New subscriptions required

Prior state retained
Previous subscriptions retained
Buffered messages delivered

OpenC2 clients should not request a clean start when connecting to the broker. The use of Clean Start = false
allows the broker to retain the client's subscriptions, and deliver buffered messages that have accumulated while the
client was disconnected. However, OpenC2 implementers using MQTT should be aware that MQTT broker resource
constraints and Message Expiry Interval settings from Producers may cause older traffic to be discarded if
clients are disconnected for extended periods.

2.10 Session Expiry and Message Expiry Intervals
The MQTT v5.0 CONNECT control packet includes a Session Expiry Interval property that informs the broker
how long the Client's session state is to be retained when the session is disconnected. The MQTT v5.0 PUBLISH control
packet includes a Message Expiry Interval property that specifies the lifetime of the Application Message in
seconds. This transfer specification makes no recommendations regarding appropriate values for either expiry interval.
Implementers are encouraged to evaluate their use cases to define reasonable values for these properties.
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3 Protocol Mapping
This section defines specific requirements for populating MQTT control packets. Values for fields and properties not
specified herein are to be populated as defined in the MQTT v5.0 specification, or as determined by the implementer
where applicable.

3.1 CONNECT Control Packet
OpenC2 Producers and Consumers MUST create and transmit the CONNECT control packet, as specified in the MQTT
v5.0 specification section 3.1, to establish a connection to the MQTT Broker.

OpenC2 Producers and Consumers MUST populate the following CONNECT control packet fields as specified:

Clean Start = FALSE
Will Flag = FALSE
Will QoS = 0 (zero)
Will Retain = FALSE
Keep Alive = Number <= 300 (seconds)
Client Identifier = client-generated identifier string

OpenC2 Producers and Consumers MUST NOT populate any of the CONNECT payload fields related to the MQTT 
Will Message.

This specification makes no recommendations regarding values for the following CONNECT properties:

Authentication Method
Authentication Data
Request Problem Information
Receive Maximum
Session Expiry
Topic Alias Maximum
Maximum Packet Size
Username flag
Password flag

3.2 PUBLISH Control Packet
OpenC2 Producers and Consumers MUST create and transmit the PUBLISH control packet, as specified in the MQTT
v5.0 specification section 3.3, to publish messages using the MQTT broker.

Topic selection for publishing OpenC2 request and response messages MUST apply the default topic structure
principles described in Section 2.2 of this specification.

OpenC2 Producers and Consumers MUST populate the following PUBLISH control packet fields as specified:

QoS = 1 (minimum, 2 of so determined by the implementer)
Retain = 0 (FALSE)
Payload Format Indicator

for binary message encodings = 0
for UTF-8 message encodings = 1

Content Type = "application/openc2"
User Property for message type = "msgType":[type] where

[type] = "req" when publishing OpenC2 requests
[type] = "rsp" when publishing OpenC2 responses
[type] = "ntf" when publishing OpenC2 notifications

User Property for message encoding = "encoding":[encoding] where
[encoding] = "json" for JSON-encoded messages using UTF-8
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[encoding] = "cbor" for CBOR-encoded binary messages

OpenC2 Producers and Consumers MUST populate the PUBLISH control packet payload with an OpenC2 message of
type specified by the "msgType":[type] User Property, encoded as specified by the "encoding":[encoding]
User Property.

OpenC2 Producers and Consumers MUST populate the from: field of the OpenC2 message with the identity of the
publisher of the message, as described in Section 2.4.2.

OpenC2 Producers MUST NOT use the MQTT PUBLISH control packet's Response Topic header when publishing
OpenC2 request messages. OpenC2 Consumers MUST publish responses to the defined response topics described in
Section 2.2.

NOTE: the preceding prohibition applies only to the use of Response Topic in OpenC2 messaging and does not
apply to other MQTT messaging by clients associated with OpenC2 Producers and Consumers.

This specification makes no recommendations regarding values for the following PUBLISH control packet properties:

Message Expiry Interval
Correlation Data
Subscription Identifier
Topic Alias

3.3 SUBSCRIBE Control Packet
Producers and Consumers MUST use the SUBSCRIBE control packet, as specified in the MQTT v5.0 specification
section 3.8 to subscribe to a set of topics consistent with the default topic structure defined in Section 2.2 of this
specification. This means that:

Consumers SHALL subscribe to
topics for all actuator profiles the Consumer implements,
the all-commands topic (oc2/cmd/all), and
an individual topic for that Consumer device (oc2/cmd/device/[device_id]).

Producers SHALL subscribe to the general response topic (oc2/rsp).
Producers SHOULD subscribe to their individual response topic (oc2/rsp/[producer_id])

When subscribing to topics OpenC2 Producers and Consumers SHOULD populate subscription options for each topic
as follows:

Maximum QoS: 2
No Local: 1 (true)
Retain as Published: 1
Retain Handling: 0

As defined in Section 2.5 of this specification, subscribers MUST specify a Maximum QoS level of at least 1 when
subscribing to topics. Implementers SHOULD allow for a Maximum QoS of 2 if supported by their implementation. As
noted in Section 2.5, when messages are published with a QoS of 1 receiving clients should be prepared to handle the
possibility of receiving duplicate messages.

This specification makes no recommendations regarding values for the following SUBSCRIBE properties:

Subscription Identifier

3.4 PINGREQ Control Packet
OpenC2 Producers and Consumers MUST send a PINGREQ control packet to all MQTT brokers with which they are
connected if they have not processed any other control packets with 95% of the keep-alive interval defined by the
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implementer. If the implementer has not otherwise specified a keep-alive interval, 95% of the value specified in Section
2.7 of this specification shall be used.

3.5 Other Control Packets
This specification makes no requirements or recommendations regarding the use of the following MQTT control packets:

CONNACK
PUBACK
PUBREC
PUBREL
PUBCOMP
SUBACK
UNSUBSCRIBE
UNSUBACK
PINGRESP
DISCONNECT
AUTH

As required OpenC2 Producers and Consumers MUST create and transmit or receive and process these control
packets as specified in their respective sections of the MQTTv5.0 specification.
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4 Conformance
An OpenC2 MQTT client conforms to this specification only if it satisfies all of the statements below:

1. Satisfies the conformance requirements for an MQTT Client as defined in Section 7.1.2, MQTT Client
Conformance Clause, of the MQTTv5.0 specification.

2. Satisfies all of the MUST / SHALL requirements in Section 3, Protocol Mapping of this specification.
3. Satisfies all of the MUST / SHALL requirements in Appendix B. Safety, Security and Privacy Considerations of

this specification.
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Appendix A: References
This appendix contains the normative and informative references that are used in this document. Normative references
are specific (identified by date of publication and/or edition number or version number) and Informative references are
either specific or non-specific.

While any hyperlinks included in this appendix were valid at the time of publication, OASIS cannot guarantee their long-
term validity.

A.1 Normative References
The following documents are referenced in such a way that some or all of their content constitutes requirements of this
document.

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119,
March 1997, http://www.rfc-editor.org/info/rfc2119.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI
10.17487/RFC5246, August 2008, <https://www.rfc-editor.org/info/rfc5246>.

[RFC7525]

Sheffer, Y., Holz, R., and P. Saint-Andre, "Recommendations for Secure Use of Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May 2015, https://www.rfc-
editor.org/info/rfc7525.

[RFC7540]

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI
10.17487/RFC7540, May 2015, https://www.rfc-editor.org/info/rfc7540.

[RFC8174]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI
10.17487/RFC8174, May 2017, http://www.rfc-editor.org/info/rfc8174.

[RFC8259]

Bray, T., ed., "The JavaScript Object Notation (JSON) Data Interchange Format", STD 90, RFC 8259, DOI
10.17487/RFC8259, December 2017, http://www.rfc-editor.org/info/rfc8259

[RFC8446]

Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August
2018, <http://www.rfc-editor.org/info/rfc8446>

[OpenC2-Lang-v1.0]

Open Command and Control (OpenC2) Language Specification Version 1.0. Edited by Jason Romano and Duncan
Sparrell. Latest version: https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html.

[mqtt-v5.0]

MQTT Version 5.0. Edited by Andrew Banks, Ed Briggs, Ken Borgendale, and Rahul Gupta. 07 March 2019. OASIS
Standard. https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html. Latest version: https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.
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A.2 Informative References
[RFC3552]

Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security Considerations", BCP 72, RFC 3552, DOI
10.17487/RFC3552, July 2003, https://www.rfc-editor.org/info/rfc3552.

[IACD]

M. J. Herring, K. D. Willett, "Active Cyber Defense: A Vision for Real-Time Cyber Defense," Journal of Information
Warfare, vol. 13, Issue 2, p. 80, April 2014.
Willett, Keith D., "Integrated Adaptive Cyberspace Defense: Secure Orchestration", International Command and Control
Research and Technology Symposium, June 2015.

[mqtt-v3.1.1]

MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 29 October 2014. OASIS Standard. http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. Latest version: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-
v3.1.1.html.

[OpenC2-SLPF-v1.0]

Open Command and Control (OpenC2) Profile for Stateless Packet Filtering Version 1.0. Edited by Joe Brule, Duncan
Sparrell and Alex Everett. 11 July 2019. Committee Specification 01. https://docs.oasis-
open.org/openc2/oc2slpf/v1.0/cs01/oc2slpf-v1.0-cs01.html. Latest version: https://docs.oasis-
open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.html.

[Sparkplug-B]

Eclipse Foundation, "Sparkplug (TM) MQTT Topic & Payload Definition", Version 2.2, October 2019,
https://www.eclipse.org/tahu/spec/Sparkplug%20Topic%20Namespace%20and%20State%20ManagementV2.2-
with%20appendix%20B%20format%20-%20Eclipse.pdf

[Paho]

Eclipse Foundation Paho MQTT Client Library, https://www.eclipse.org/paho/
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Appendix B. Safety, Security and Privacy Considerations
For operational use transferring OpenC2 messages, all connections between OpenC2 endpoint (i.e., Producer and
Consumer) MQTT clients and brokers MUST use Transport Layer Security (TLS). Endpoint MQTT clients and MQTT
brokers used for OpenC2 messaging MUST support TLS version 1.2 [RFC5246] connections or higher for
confidentiality, integrity, and authentication when sending OpenC2 Messages over MQTT, and SHOULD support TLS
Version 1.3 [RFC8446] or higher connections.

OpenC2 endpoint MQTT clients and MQTT brokers MUST NOT support any version of TLS prior to v1.2 and MUST NOT
support any version of Secure Sockets Layer (SSL).

The implementation and use of TLS SHOULD align with the best currently available security guidance, such as that
provided in [RFC7525]/BCP 195.

The TLS session MUST use non-NULL ciphersuites for authentication, integrity, and confidentiality. Sessions MAY be
renegotiated within these constraints.

OpenC2 endpoint MQTT clients supporting TLS v1.2 MUST NOT use any of the blacklisted ciphersuites identified in
Appendix A of [RFC7540].

OpenC2 endpoint MQTT clients supporting TLS 1.3 MUST NOT implement zero round trip time resumption (0-RTT).

This specification recommends that the mechanisms available in MQTT v5.0 be given preference for implementing
enhanced authentication of OpenC2 endpoints.

OpenC2 messaging over unsecured MQTT connections SHOULD be restricted to non-operational testing purposes.
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Appendix E: Examples
This appendix is non-normative in its entirety.

MQTT control packet examples in this appendix present packet contents relevant to the function(s) being illustrated but
do not include all required control packet contents (e.g., computed length fields are not listed, bitmapped flags are written
out to convey intent rather than presented as bitmaps). Packet examples use a color code to distinguish fields populated
based on requirements contained in this specification from fields left to the implementer's discretion or based on
requirements from the MQTTv5.0 specification, as follows:

Green background and (r) appended to the field name in control packet illustrations indicates the value for that
field is required, based on MUST/SHALL requirements contained in this specification.
Yellow background and (s) appended to the field name in control packet illustrations indicates the value for that
field is suggested, based on MAY/SHOULD requirements contained in this specification.
White background in control packet illustrations indicates that the value should be determined by the implementor,
guided by the MQTTv5.0 specification.

This notation is illustrated in Figure E-1.

Figure E-1: Color Code for Packet Examples

The OpenC2 Language Specification defines the from and to fields in OpenC2 messages as strings containing
"Authenticated identifier of the creator of or authority for execution of a message." No further definition is provided
regarding the content of the from and to strings. The examples in this Appendix populate these fields with notional
Producer and Consumer email addresses for convenience and readability.

The message format in the OpenC2 Language Specification includes a request_id used to distinguish messages,
and the recommended content for the request_id is a UUID v4. The examples in this appendix use uuid_x, where x
is a number, as a shorthand for actual UUIDs, which should be used in operation.

E.1 Example 1: Connect and Subscribe
This example illustrates the message flows involved in the process of a Producer (i.e., an Orchestrator) and a Consumer
each connecting to the MQTT broker as clients and subscribing to the appropriate channels for each, in accordance with
the default topic model. The message flows are depicted in Figure E-2. The Producer is assigned the username 
orch01. The Consumer is assigned the username zulu01 and supports the notional actuator profiles alpha and 
iota. No OpenC2-specific content appears in any of the messages required for this example.

This example illustrates the following aspects of the operating model:

Client and broker roles, Section 2.1
Default topic structure, Section 2.2
Subscription options settings, Section 2.3
Randomly generated MQTT ClientID, Section 2.6
Recommended 5 minute keep-alive interval, Section 2.7
No use of MQTT "will" messages, Section 2.8
Clean Start flag set to false, Section 2.9
Optional use of username and password, Section 3.1

Figure E-2: Connect and Subscribe
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The Producer and Consumer CONNECT packets for this example are as follows; the optional username and password
fields of the CONNECT packets are populated in this example:
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The Consumer SUBSCRIBE and Broker SUBACK packets for this example are shown below; Subscription 
Options are populated as specified in section 3.3 of this specification:

Standards Track Work Product

transf-mqtt-v1.0-cs01 Copyright © OASIS Open 2021. All Rights Reserved. 19 November 2021  - Page 23 of 38



E.2 Example 2: Command / Response Exchange
This example illustrates the message flows that occur for a notional but common process of an OpenC2 Producer
publishing an OpenC2 request to multiple Consumers. The focus of this example is the use of MQTT PUBLISH and
PUBACK control packets for the message flows. No meaningful OpenC2 content appears in any of the messages in this
example.

In the example an OpenC2 Producer publishes a command to the channel for a notional actuator profile, iota. The
example assumes the existence of two notional Consumers identified as Xray and Zulu that both implement the iota
AP, and that both Consumers are subscribed to the corresponding command topic oc2/cmd/ap/iota. The example
messages first show the exchange between the Producer publishing the Openc2 request and the MQTT broker. A similar
exchange then occurs between the broker and every Consumer device subscribed to the oc2/cmd/ap/iota topic to
distribute the command to the intended recipients. While the OpenC2 request in this example is only notional, the
example assumes the response_requested argument is omitted from the request message so the consumers
exhibit the OpenC2 default behavior of sending a complete response.

The command and response messages in the sequence diagram shown in Figure E-3 are published with a QoS of 1,
which requires the recipient to respond to the PUBLISH packet with a PUBACK packet.

This example illustrates the following aspects of the operating model:

Default topic structure, Section 2.2
Properties to convey OpenC2 message type and serialization, Section 2.4
Recommended use of QoS 1, Section 2.5
PUBLISH control packet flags, Section 3.3

Figure E-3: Publish Request and Response
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The PUBLISH and PUBACK control packets for the command portion of this example are illustrated below. The packet
contents between the Producer and the Broker, and between the Broker and the Consumers are the same in each
PUBLISH / PUBACK exchange, with the exception that the packetId field will differ for each of the three publishing
exchanges in Figure E-3, as that value is assigned by the initiator of each exchange. The payload of "(JSON-encoded 
openc2 request)" is a placeholder for a meaningful OpenC2 request message.
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E.3 Example 3: Query Consumer Actuator Profiles
This example illustrates the packaging of OpenC2 requests in MQTT PUBLISH control packets. The scenario is a
request containing an OpenC2 query action sent over MQTT to retrieve the list of actuator profiles supported by a set of
Consumers. This example includes three Consumers that implement several different actuator profiles, as follows:

Consumer #1 implements the stateless packet filtering AP (slpf)
Consumer #2 implements the stateless packet filtering and intrusion detection system APs (slpf and ids)
Consumer #3 implements the endpoint detection and response and software bill of materials (SBOM) APs (edr
and sbom)

NOTES:

1. No sequence diagram is included as the PUBLISH / PUBACK sequences among Producers, Consumers, and
Brokers are similar to those illustrated in Example 2. This example only includes the PUBLISH control packets
containing the OpenC2 request and response messages.

2. The response_requested argument is omitted from the query request message so the Consumers exhibit
the default behavior of sending a complete response.

This example illustrates the following aspects of the operating model:

Default topic structure, Section 2.2
Packaging of OpenC2 messages in PUBLISH control packet payloads, Section 2.4
Properties to convey OpenC2 message type and serialization, Section 2.4
Recommended use of QoS 1, Section 2.5
PUBLISH control packet flags, Section 3.2

The Producer initiates this process by publishing a query request to oc2/cmd/all. The OpenC2 request message
contents and corresponding MQTT PUBLISH control packet are shown below, followed by the Consumer replies. The
PUBLISH control packet fields and OpenC2 message content that varies among the packets is shown in red in the
packet examples for clarity, and the JSON nessages in the control packet payloads use condensed formatting (white
space minimized).

Query Action -- Producer to Consumers

The following OpenC2 request message is published by the Producer and delivered to all Consumers subscribed to 
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oc2/cmd/all.

{
  "headers": {
    "request_id": "uuid_1",
    "created": 1610483630,
    "from": "Producer1@example.com"
  },
  "body": {
    "openc2": {
      "request": {
        "action": "query",
        "target": {
          "features": [
            "profiles"
          ]
        }
      }
    }
  }
}

Query Response -- Consumers to Producer

The consumer responses are as follows:

Consumer 1:

The following OpenC2 response message is published by Consumer 1 and delivered to the Producer on the oc2/rsp
topic.

{
  "headers": {
    "request_id": "uuid_1",
    "created": 1610483633,
    "from": "Consumer1@example.com"
  },
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  "body": {
    "openc2": {
      "response": {
        "status": 200,
        "results": {
          "profiles": [
            "slpf"
          ]
        }
      }
    }
  }
}

Consumer 2:

The following OpenC2 response message is published by Consumer 2 and delivered to the Producer on the oc2/rsp
topic.

{
  "headers": {
    "request_id": "uuid_1",
    "created": 1610483632,
    "from": "Consumer2@example.com"
  },
  "body": {
    "openc2": {
      "response": {
        "status": 200,
        "results": {
          "profiles": [
            "slpf",
            "ids"
          ]
        }
      }
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    }
  }
}

Consumer 3:

The following OpenC2 response message is published by Consumer 2 and delivered to the Producer on the oc2/rsp
topic.

{
  "headers": {
    "request_id": "uuid_1",
    "created": 1610483632,
    "from": "Consumer3@example.com"
  },
  "body": {
    "openc2": {
      "response": {
        "status": 200,
        "results": {
          "profiles": [
            "edr",
            "sbom"
          ]
        }
      }
    }
  }
}
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E.4 OpenC2 Deny Example
This example illustrates the execution of a common OpenC2 requests using MQTT PUBLISH control packets. The
example is a deny action for a particular IP connection, as described in the Stateless Packet Filtering AP, Section
A.1.1. This example primarily indicates the content of the PUBLISH control packets. For simplicity the exchange
illustrated only includes one Producer and one Consumer.

NOTES:

1. No sequence diagram is included as the PUBLISH / PUBACK sequences among Producer, Consumer, and
Broker are similar to those illustrated in Example 2. This example only includes the PUBLISH control packets
containing the OpenC2 request and response messages.

2. The response_requested argument is omitted from the query request message so the Consumers exhibit
the default behavior of sending a complete response.

This example illustrates the following aspects of the operating model:

Default topic structure, Section 2.2
Packaging of OpenC2 messages in PUBLISH control packet payloads, Section 2.4
Properties to convey OpenC2 message type and serialization, Section 2.4
Recommended use of QoS 1, Section 2.5
PUBLISH control packet flags, Section 3.2

The Producer initiates this process by publishing a deny request to oc2/cmd/slpf. The OpenC2 request message
contents and corresponding MQTT PUBLISH control packet are shown below, followed by the Consumer reply.The
JSON nessages in the control packet payloads use condensed formatting (white space minimized).

Deny Action -- Producer to Consumer

The following OpenC2 request message is published by the Producer and delivered to all Consumers subscribed to 
oc2/cmd/slpf.

{
  "headers": {
    "request_id": "uuid_2",
    "created": 1610483630,
    "from": "Producer1@example.com"
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  },
  "body": {
    "openc2": {
      "request": {
        "action": "deny",
        "target": {
          "ipv4_connection": {
            "protocol": "tcp",
            "src_addr": "1.2.3.4",
            "src_port": 10996,
            "dst_addr": "198.2.3.4",
            "dst_port": 80
          }
        },
        "args": {
          "start_time": 1534775460000,
          "duration": 500,
          "response_requested": "ack",
          "slpf": {
            "drop_process": "none"
          }
        },
        "actuator": {
          "slpf": {
            "asset_id": "30"
          }
        }
      }
    }
  }
}
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Deny Response -- Consumer to Producer

The following OpenC2 response message is published by the Consumer 1 and delivered to the Producer on the 
oc2/rsp topic.

{
  "headers": {
    "request_id": "uuid_2",
    "created": 1610483633,
    "from": "Consumer1@example.com"
  },
  "body": {
    "openc2": {
      "response": {
        "status": 102
      }
    }
  }
}
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E.5 Paho Python Client Examples
This set of examples illustrates the use of the paho python MQTT client to utilize MQTTv5 as described in this
specification. The paho client documentation [https://pypi.org/project/paho-mqtt/] currently does not include explanations
for how to access MQTTv5 features, so this example has been constructed based on examination of the client source
[https://github.com/eclipse/paho.mqtt.python/tree/master/src/paho/mqtt].

As described in the client documentation, the basic approach to using the paho client is:

Create a client instance
Connect to a broker using one of the connect*() functions
Call one of the loop*() functions to maintain network traffic flow with the broker
Use subscribe() to subscribe to a topic and receive messages
Use publish() to publish messages to the broker
Use disconnect() to disconnect from the broker

The paho client’s MQTTv5 features also depend on the use of the Properties class to specify properties to include in
the PUBLISH packet, and the SubscribeOptions class to specify the appropriate options when subscribing to
topics.

This example focuses on those aspects of client use that leverage MQTTv5 features, and does not attempt to illustrate a
complete working solution.

E.5.1 Connecting

This example illustrates the process of connecting to an MQTT broker and subscribing to topic filters appropriate for a
client that implements the stateless packet filter actuator profile (AP). The example illustrates the following aspects of the
operating model:

Randomly generated MQTT ClientID, Section 2.6
Recommended 5 minute keep-alive interval, Section 2.7
No use of MQTT "will" messages, Section 2.8
Clean Start flag set to false, Section 2.9
Optional use of username and password, Section 3.1
Use of TLS 1.2 or higher, Appendix B

import json
import ssl
from typing import Any, Dict
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from paho.mqtt import client as mqtt
from paho.mqtt.properties import Properties

# MQTT functions
def mqtt_on_connect(client: mqtt.Client, userdata: Any, flags: dict, rc: int, 
properties: Properties = None) -> None:
   """
   MQTT Callback for when client receives connection-acknowledgement response from 
MQTT server.
   :param client: Class instance of connection to server
   :param userdata: User-defined data passed to callbacks
   :param flags: Response flags sent by broker
   :param rc: Connection result, Successful = 0
   """
   print(f"Connected with result code {rc} -> {mqtt.connack_string(rc)}, 
properties: {properties}")
   # Subscribing in on_connect() allows us to renew subscriptions if disconnected

   if rc == 0 and isinstance(userdata, list):
       if not all(isinstance(t, str) for t in userdata):
           print("Error in on_connect. Expected topic to be of type a list of 
strings.")
           return
       (host, port) = client.socket().getpeername()
       print(f"{host}:{port} listening on `{'`, `'.join(t.lower() for t in 
userdata)}`")
       # See E.5.2
        client.subscribe([(t.lower(), SUBSCRIBE_OPTIONS) for t in userdata])

def mqtt_on_message(client: mqtt.Client, userdata: Any, msg: mqtt.MQTTMessage) -> 
None:
   """
   MQTT Callback for when a PUBLISH message is received from the server.
   :param client: Class instance of connection to server.
   :param userdata: User-defined data passed to callbacks
   :param msg: Contains payload, topic, qos, retain
   """
   try:
       # Load message as JSON; EXAMPLE: DO NOT HARD CODE
       payload = json.loads(msg.payload)
       print(f'Received: {payload}')
       # Process message as needed

   except Exception as e:
       print(f"Received: {msg.payload}")
       print(f"MQTT message error: {e}")

client = mqtt.Client(
   # client_id per section 2.6 of this spec
   client_id=self.client_id,
   # Subscriptions topics, Topics based on SLPF actuator profile
   userdata=['oc2/cmd/all', f'oc2/cmd/device/{dev_id}', 'oc2/cmd/ap/slpf'],
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   protocol=mqtt.MQTTv5,
   transport='tcp'
)

# Auth, if necessary
client.username_pw_set(
   username='USER',
   password='PASSWORD'
)

# TLS, if necessary
client.tls_set(
   ca_certs='PATH/TO/CA_CERT',
   certfile='PATH/TO/CERT_FILE',
   keyfile='PATH/TO/KEY_FILE',
   tls_version=ssl.PROTOCOL_TLSv1_2
)

# Set callbacks
client.on_connect = mqtt_on_connect
client.on_message = mqtt_on_message

try:
   client.connect(
       host='host',
       port='port',
       keepalive=300,
       clean_start=mqtt.MQTT_CLEAN_START_FIRST_ONLY
   )
except Exception as e:
   print(f'MQTT Error: {e}')

print(f'Connect to MQTT broker: host:port')
client.loop_start()
E.5.2 Subscribing

This example provides supporting detail for the E.5.1 example regarding certain aspects of establishing subscriptions
using the paho client. This code illustrates the following aspects of the operating model:

Default topic structure, Section2.2
Subscription options settings, Section 2.3

# Addition from E.5.1
from paho.mqtt.subscribeoptions import SubscribeOptions

SUBSCRIBE_OPTIONS = SubscribeOptions(
   qos=1,
   noLocal=True,
   retainAsPublished=True,
  retainHandling=subscribeoptions.SubscribeOptions.RETAIN_SEND_ON_SUBSCRIBE
)

TOPICS = [
  ('oc2/cmd/all', SUBSCRIBE_OPTIONS),
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  (f'oc2/cmd/device/{dev_id}', SUBSCRIBE_OPTIONS),
  ('oc2/cmd/ap/slpf', SUBSCRIBE_OPTIONS)
]

client.subscribe(TOPICS)
E.5.3 Publishing

This example illustrates the creation and publishing of a message using the paho client once a broker connection has
been established as in E.5.1. This code illustrates the following aspects of the operating model:

Default topic structure, Section2.2
Recommended use of QoS 1, Section 2.5
Properties to convey OpenC2 message type and serialization, Section 2.4
PUBLISH control packet flags, Section 3.2

# Addition from E.5.1
from paho.mqtt.packettypes import PacketTypes

msg = {
  "headers": {
    "request_id": "uuid_3",
    "created": 1610483630,
    "from": "slpf@example.com"
  },
  "body": {
    "openc2": {
      "response": {
        "status": 200,
        "status_text": "OK - the Command has succeeded.",
        "results": {
          "profiles": ["slpf", "x-acme"]
        }
      }
    }
  }
}

# configure MQTT PUBLISH Packet Properties
# in accordance with section 3.3 of this spec
publish_props = properties.Properties(PacketTypes.PUBLISH)
# Format Indicator - Binary=0, UTF-8=1
publish_props.PayloadFormatIndicator = 1
# Content-Type
publish_props.ContentType = "application/openc2"
# User Property for Message Type
publish_props.UserProperty = ("msgType", "rsp")
# User Property for Message Encoding
publish_props.UserProperty = ("encoding", "json")

client.publish(
   "oc2/rsp",
   payload=json.dumps(msg),
   qos=1,
   retain=False,
   properties=publish_props
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)
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Appendix F: Notices
Copyright © OASIS Open 2021. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights
Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this section are included on all such
copies and derivative works. However, this document itself may not be modified in any way, including by removing the
copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable
produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS
IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS Standards Final
Deliverable documents (Committee Specification, Candidate OASIS Standard, OASIS Standard, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be
infringed by implementations of this OASIS Standards Final Deliverable, to notify OASIS TC Administrator and provide
an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of
the OASIS Technical Committee that produced this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims
that would necessarily be infringed by implementations of this OASIS Standards Final Deliverable by a patent holder that
is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical
Committee that produced this OASIS Standards Final Deliverable. OASIS may include such claims on its website, but
disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed
to pertain to the implementation or use of the technology described in this OASIS Standards Final Deliverable or the
extent to which any license under such rights might or might not be available; neither does it represent that it has made
any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or
deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS
Standards Final Deliverable, can be obtained from the OASIS TC Administrator. OASIS makes no representation that
any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact,
Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to
refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of,
specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-
open.org/policies-guidelines/trademark/ for above guidance.
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